Efficient amplification of self-gelling polypod-like structured DNA by rolling circle amplification and enzymatic digestion

نویسندگان

  • Tomoya Yata
  • Yuki Takahashi
  • Mengmeng Tan
  • Kumi Hidaka
  • Hiroshi Sugiyama
  • Masayuki Endo
  • Yoshinobu Takakura
  • Makiya Nishikawa
چکیده

The application of DNA as a functional material such as DNA hydrogel has attracted much attention. Despite an increasing interest, the high cost of DNA synthesis is a limiting factor for its utilization. To reduce the cost, we report here a highly efficient amplification technique for polypod-like structured DNA (polypodna) with adhesive ends that spontaneously forms DNA hydrogel. Two types of polypodna with three (tripodna) and four (tetrapodna) pods were selected, and a template oligodeoxynucleotide, containing a tandem sequence of a looped tripodna or tetrapodna, respectively, along with restriction enzyme (TspRI) sites, was designed. The template was circularized using T4 DNA ligase, and amplified by rolling circle amplification (RCA). The RCA product was highly viscous and resistant to restriction digestion. Observation under an electron microscope revealed microflower-like structures. These structures were composed of long DNA and magnesium pyrophosphate, and their treatment with EDTA followed by restriction digestion with TspRI resulted in numerous copies of polypodna with adhesive ends, which formed a DNA hydrogel. Thus, we believe this technique provides a new approach to produce DNA nanostructures, and helps in expanding their practical applications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Corrigendum: Efficient amplification of self-gelling polypod-like structured DNA by rolling circle amplification and enzymatic digestion

In this Article, Affiliations 2 and 3 are not listed in the correct order. The correct affiliations are listed below: This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included u...

متن کامل

Direct retransformation of yeast with plasmid DNA isolated from single yeast colonies using rolling circle amplification.

We have efficiently amplified plasmid DNA from single yeast colonies using rolling circle amplification (RCA). The amplified DNA can be directly used for restriction digestion, DNA sequencing, or yeast transformation. The RCA-based high-fidelity amplification would be useful for plasmid manipulation in a variety of yeast-based systems, particularly for high-throughput analyses.

متن کامل

Sensitive colorimetric biosensing for methylation analysis of p16/CDKN2 promoter with hyperbranched rolling circle amplification.

A simple, fast and sensitive colorimetric biosensing method for DNA methylation analysis was developed by combining methylation-sensitive endonuclease based digestion with hyperbranched rolling circle amplification (HRCA) induced signal enhancement. The assay was carried out on a DNA capture probe modified 96-cell microplate with four sequential steps of target recognition, endonuclease-based d...

متن کامل

Rolling Circle Amplification (RCA): an approach for quick detection and identification of fungal species

Conventional methods for fungal identification in the clinical laboratory rely on morphological andphysiological tests. These tests often need several days or weeks to complete and are frequentlyunspecific. Molecular identification mostly implies sequencing, which is relatively expensive andtime-consuming, as well as impractical for large numbers of isolates. The Rolling CircleAmplification app...

متن کامل

A new enzymatic route for production of long 5'-phosphorylated oligonucleotides using suicide cassettes and rolling circle DNA synthesis

BACKGROUND The quality of chemically synthesized oligonucleotides falls with the length of the oligonucleotide, not least due to depurinations and premature termination during production. This limits the use of long oligonucleotides in assays where long high-quality oligonucleotides are needed (e.g. padlock probes). Another problem with chemically synthesized oligonucleotides is that secondary ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2015